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Measurement is an essential component of quantum algorithms, and for superconducting qubits it
is often the most error prone. Here, we demonstrate model-based readout optimization achieving
low measurement errors while avoiding detrimental side-effects. For simultaneous and mid-circuit
measurements across 17 qubits, we observe 1.5% error per qubit with a 500 ns end-to-end duration and
minimal excess reset error from residual resonator photons. We also suppress measurement-induced
state transitions achieving a leakage rate limited by natural heating. This technique can scale to
hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term
applications.

Superconducting qubits have achieved measurement
errors below 1% for single qubits [1–4] thanks to ad-
vancements including dispersive readout [5] and quantum-
limited parametric amplifiers [6]. However, the increasing
scale and complexity of algorithms bring a new set of
challenges beyond simple single-qubit measurements. For
example, quantum error correction requires measurements
to be performed simultaneously, in the middle of circuits,
and in a repetitive fashion. Mid-circuit measurements
must be fast to avoid decohering qubits not being mea-
sured, but faster readout can increase measurement and
leakage errors. In recent error-correction experiments
with superconducting qubits, readout-induced leakage
severely limited performance [7, 8], and in another, 20%
of the total error (twice that of the measurement itself)
was due to qubit idling during measurement [9].

Typically, readout is calibrated in-situ, meaning that
control parameters like pulse amplitude and frequency
are varied until the observed measurement error is mini-
mized. While effective at minimizing measurement error
for isolated qubits, it can fail to capture other destruc-
tive processes like leakage or residual resonator photons.
Additionally, effects such as qubit-qubit coupling impose
non-locality in that the optimal values for one qubit de-
pend on the values of neighboring qubits. In turn, qubits
optimized in isolation tend to perform poorly when mea-
sured simultaneously. Thus, optimizing multi-qubit mea-
surement requires searching a parameter space where the
dimension scales linearly with the number of qubits, while
attempting to minimize many metrics at once. This task
rapidly becomes intractable by in-situ parameter sweeps
as the number of qubits grows.

In this Letter, we present an ex-situ (model based)
optimization technique for readout parameters. Ex-situ
optimization which allows us to explore a larger parame-
ter space and minimize errors that are difficult or costly
to measure, compared to in-situ optimization where the
speed is limited by the data rate of the quantum proces-

sor. In designing our model-based approach, we tackle
three challenges which are often seen in quantum optimal
control [10]. First, if the models do not accurately cap-
ture the present error channels, ex-situ optimization is
likely to perform worse than in-situ. Second, the models
must be evaluated quickly to be able to actually explore
a larger space. These two challenges are conflicting in
that more accurate models typically result in slower eval-
uation; for instance, a quantum simulation of the system
dynamics would be too slow. Third, we must use an
optimization algorithm that can find a reasonably good
minimum without requiring a prohibitively long runtime.

We begin by describing representative models for read-
out error channels relevant to a Sycamore processor
[11], which consists of superconducting frequency-tunable
transmon qubits, each coupled to their own readout res-
onator. The models are quick to evaluate and we demon-
strate that they accurately predict a variety of metrics
over a wide range of parameters. We then use them
together with the snake optimizer [12] to minimize the
errors for 17 qubits in a distance-3 surface code. We
achieve 1.5% measurement error per qubit in 500 ns (from
the start of the readout until the system is ready for the
next operation), while also reducing any additional errors
like reset and leakage.

The models fall into two categories: predictive or heuris-
tic. Ideally, we would only have predictive models (models
that accurately predict error rates), but this is not always
feasible as the computation might be too inaccurate or
take too long. In those cases we use heuristic models to
steer the optimizer away from parameter regions where
errors are large, but difficult to quantify. We use pre-
dictive models for the signal-to-noise ratio (SNR), qubit
relaxation during readout, and residual resonator photons.
Heuristic models include measurement-induced state tran-
sitions [13, 14], and coupling to neighboring qubits. We
sum all models into a single optimization cost function.
The process is illustrated in Fig. 1 (a).
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FIG. 1. (a) The optimization workflow. We build error
models from fixed parameters like resonator frequency and
linewidth, which we then run an optimizer on to find a set of
variable parameters (e.g. pulse amplitude and length) that
gives low errors. The output of the optimizer is a unique
pulse shape for each qubit, as well as qubit frequency (not
shown). (b) Examples of readout error mechanisms. The
middle qubit, which is in |1⟩, is coupled to two other qubits.
During readout of the middle qubit its excitation can relax
to |0⟩; swap into |1⟩ of the right qubit; or combine with the
excitation in the left qubit to |2⟩. Additionally, photons in
the readout resonator can excite the qubit up to a high state.
(c) Number of photons in the readout resonator as a function
of time, both simulated (solid line) and measured (circles).
The inset shows the simulated values on a logarithmic scale.
Residual photons can cause reset and dephasing errors.

Each model takes one or several input parameters de-
scribing the properties of the qubits, their readout res-
onators, or the measurement system itself. In total there
are seven such parameters,

• Qubit anharmonicity, α < 0

• Resonator-qubit coupling, g(ωq)

• Bare resonator frequency, ωr

• Measurement efficiency, η [5]

• Resonator linewidth, κ

• Qubit relaxation rate as a function of frequency,
Γ1(ωq)

• A calibrated reference for the readout pulse power
at the processor

We characterize these using a suite of metrology exper-
iments [15]. Most of them are static and characterized
just once. However, the qubit relaxation time is known

to fluctuate [16] and is therefore remeasured just before
optimization.

Additionally, there are four parameters which we can
tune and optimize,

• Qubit frequency during readout, ωq

• Readout pulse amplitude, B0

• Readout pulse length, tp

• Readout ringdown length, tr

The ringdown length is needed for mid-circuit measure-
ments to allow the resonator to decay back to its ground
state before other operations can resume. We choose to
use a fixed total readout time (tp + tr = 500 ns), allowing
us to synchronize gates, as well as reduce the number of
optimization parameters to three.

A key parameter derived from the model inputs is the
separation between resonator frequencies for the states
|0⟩ and |1⟩, i.e. the dispersive shift 2χ(ωq), given by [17],

χ(ωq) = g(ωq)2α

(ωq − ωr)2(1 + α/(ωq − ωr))

(
1 − ωq − ωr

ωq

)
.

(1)
The shift is tuneable since it depends on the qubit fre-
quency; absent other constraints, the SNR per measure-
ment photon is maximized when 2χ = κ.

A second derived parameter is the field in the resonator
as a function of time, β(t) which is found by solving

dβ

dt
=

√
κB(t) + (i∆ − κ/2)β(t), (2)

where B(t) is the readout drive amplitude and has the
dimension

√
photons per time, and ∆ is the frequency

difference between the drive and the dressed resonator.
In the rest of this paper we restrict the drive to be in the
center of the resonator frequencies corresponding to |0⟩
and |1⟩, i.e. ∆ = ±χ, since that yields the highest SNR
in the parameter regime we are interested in. For both
states, we find the corresponding β|0⟩(t) and β|1⟩(t) by
numerically solving Eq. (2).

The applied readout pulse, together with the noise
(assumed to be Gaussian) in the readout chain, leads
to a certain SNR, from which we derive the corre-
sponding probability to misidentify the state. Given
δβ(t) = β|0⟩(t) − β|1⟩(t), the SNR is calculated as

SNR = 2ηκ

∣∣∣
∫ tp+tr

0 δβ(t)w(t)dt
∣∣∣
2

∫ tp+tr

0 |w(t)|2
, (3)

where w(t) is an integration window function, which we
set to δβ(t)∗ to maximize SNR. From SNR we derive the
corresponding error,

ϵseparation = 1
2erfc

(√
SNR
2

)
. (4)
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During readout the qubit might decay and potentially
cause a measurement error. To calculate the error rate
we need the qubit frequency during readout, which is
changing throughout the process due to the AC-Stark
effect, and the corresponding relaxation rates at those fre-
quencies. The latter is measured by a standard relaxation
experiment versus qubit frequency; while the former can
be found via Eqs. (1) and (2),

ωq(t) = ωq(0) + 2|β|1⟩(t)|2χ(ωq(0)), (5)

where we have assumed that the AC-Stark shift is strictly
linear. Given Γ1(ωq), we calculate the relaxation error as

ϵrelaxation =
∫ T0

0
Γ1(ωq(t))dt. (6)

We approximate T0 to be the point where SNR is half of
its maximum, since a relaxation event beyond that point
should not change the measurement outcome. We also
choose to ignore the upward transition rate |0⟩ → |1⟩,
since the timescale for that process is much longer than
for relaxation and the readout.

The resonator must be mostly depleted of photons be-
fore the next operation can begin, since any remaining
photons cause qubit dephasing. Additionally, in our archi-
tecture such photons directly translate into reset errors
since it is based on the swap interaction between the qubit
and its resonator [18], and a photon in the resonator could
be swapped into either |1⟩ or |2⟩, depending on the state.
We use the mean photon number in the resonator at the
end of the readout,

ϵphoton =
|β|0⟩(T )|2 + |β|1⟩(T )|2

2 , (7)

as the error model to minimize both the reset error and
qubit dephasing.

Shown in Fig. 1(c) are the expected photon number,
|β|0⟩(t)|2, and the corresponding measured values (via
spectroscopic measurements of the AC-Stark shift [14]).
The measurement technique is not sensitive to the small
frequency shifts occurring at the low photon numbers
towards the end of readout; however, since the agreement
is good during the pulse itself we can use the model to infer
what the final photon number is, which in this example
is 0.005.

In Fig. 2, we show predicted and measured values for
ϵseparation and ϵrelaxation as a function of qubit frequency,
pulse amplitude, and pulse length. We additionally show
the predicted residual photon number, though we do not
have a sensitive enough technique to reliably measure
this quantity at the modeled levels. Overall, we see good
agreement between measured and simulated values, with
the exception for ϵrelaxation at low amplitudes and lengths
where ϵseparation is large. That parameter regime should
be avoided and accurately predicting ϵrelaxation there is
less important. The cause of the discrepancy could be due

Residual photon number
(a) (c)(b)

Two-level 
system

FIG. 2. Error models and their dependence on readout pa-
rameters. (a) Separation and relaxation errors, and residual
photon number, versus the qubit frequency with amplitude
and length kept fixed. Circles are measured data, and lines
are simulated values. As the qubit frequency changes, we
track the readout pulse frequency to be centered between the
two dressed resonator states. The peak at 6 GHz is due to a
two-level system defect. (b) and (c) show the same models,
but versus pulse amplitude and length, respectively. The total
readout time is kept constant, such that when the pulse length
increases, the ringdown time decreases. The non-swept pa-
rameters are kept fixed at the values indicated by the dashed
vertical lines in the respective panels.

to the approximations in Eq. (6) or from the inaccuracy
in trying to extract a small error on top of a large error.

We can understand the tradeoffs in readout optimiza-
tion by studying the predictive models. If we only consider
these three models, the ideal pulse would be short and
with high amplitude, since the SNR approximately scales
quadratically with the amplitude [Fig. 2 (b)] and linearly
with the pulse length [Fig. 2 (c)], while ϵphoton also scales
quadratically with the amplitude, but exponentially with
the pulse length (for a fixed total time). Additionally, a
short readout pulse minimizes ϵrelaxation.

However, a high pulse amplitude can be problematic
for several reasons. For example, it leads to measurement-
induced state transitions [13, 14], which occurs when
resonator photons are transferred to the qubit and excite
it far beyond the computational subspace, as illustrated
in Fig. 1 (b). While this high state may lead to a mea-
surement error, it is more importantly immune to our
reset protocol [18], making it particularly destructive for
mid-circuit measurements and quantum error correction
[7, 8]. Using the model in Ref. [14], valid only for ωq > ωr,
we define a heuristic that constrains the maximum photon
number in the resonator,

max(|β(t)|2) < aeb(ωq−ωr) −
√

aeb(ωq−ωr), (8)

where a and b are extracted from numerical simulations
and only dependent on α and g [14].

Finally, we introduce a model related to the coupling
between qubits. Our qubits are laid out on a square grid
where a pair of qubits have four relevant coupling channels,
|01⟩ ↔ |10⟩, |11⟩ ↔ |20⟩, |11⟩ ↔ |02⟩, and |12⟩ ↔ |21⟩.
We heuristically model the errors associated with these
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channels using a sum of Lorentizians,

ϵcoupling =
∑

i

ci
γi

2
π

(ωq − ωi)2 + γ2
i /4 , (9)

where ci, γi and ωi are the amplitude, width, and cen-
ter frequency of each transition. We use a heuristic to
avoid having to model the time dependence of the qubit
frequency and its effect on the measurement errors. That
dependence is complicated by the AC-Stark effect, which
imposes both a frequency shift due to mean number of
photons in the resonator [Eq. (5)], as well as frequency
broadening due to photon number fluctuations. By using
wide and large enough Lorentzians the optimizer avoids
any qubit-qubit interactions. Assuming couplings be-
tween nearest and next-nearest neighbors there are up to
32 frequency collisions for each qubit.

We now continue to the actual optimization. While
any global optimizer can be used, we choose to employ
the snake optimizer [12], which has successfully optimized
single and two-qubit gate parameters for a variety of
quantum algorithms [9, 11, 19]. More optimization details
are found in Ref. [20]. As our experimental platform
we use 17 qubits in a distance-3 surface code layout,
illustrated in Fig. 3(a). The optimization takes 1 minute
and includes 1.7 million evaluations of the cost function.
Afterwards, the resulting parameters are uploaded to the
control system, and the only remaining calibration is to
find the discrimination line to distinguish between |0⟩ and
|1⟩ for each qubit. We choose to not model this since we
can efficiently measure it simultaneously across all qubits,
and it does not conflict with the other parameter choices.

We compare three different optimization strategies to
evaluate the performance of our model-based approach.
The first strategy is in-situ optimization where we choose
a fixed pulse length (300 ns) and perform a sequence of
1D sweeps to find the optimal pulse frequency, amplitude,
qubit frequency, and integration window. The second
strategy is ex-situ optimization using a partial cost func-
tion consisting of only the predictive models, i.e. no
qubit-qubit coupling or measurement-induced state tran-
sitions models. The third strategy is ex-situ optimization
using a complete cost function consisting of all available
models. For each strategy, we quantify three important
aspects: measurement errors, reset errors, and leakage.
Note that we do not benchmark the performance of op-
timizer itself, e.g. how well it finds the actual global
minimum. The performance aspects of the snake have
been recently studied in Ref. [21].

We benchmark measurement errors by preparing 200
random initial states over all qubits and then sampling
2,000 measurement outcomes for each initial state. We
then repeat the procedure, but this time using only the
measure qubits to mimic the surface code mid-circuit
measurements. We compare all outcomes with the known
initial states and extract the errors, seen in Fig. 3 (b), and
calculate the measurement error as (P (1|0) + P (0|1)) /2,

(a)

qm qmX M R M X M M(   )N
Ex-situ: predictive and 
heuristic models

Ex-situ: predictive models
In-situ

Heating limit

FIG. 3. Benchmarking of the optimized readout performance.
We compare three optimization strategies: in-situ; ex-situ with
only predictive models; ex-situ with predictive and heuristic
models. (a) The distance-3 surface code with 9 data qubits
(yellow) and 8 measure qubits (blue), used for the benchmark-
ing. (b) Simultaneous measurement errors for two cases: all
qubits, only measure qubits. We prepare a set of random
states across the qubits and perform simultaneous measure-
ments. The data shows the combination of the two cases. (c)
Reset error added by a preceding measurement, benchmarked
on the measure qubits. The excess reset error is caused by
residual photons in the readout resonator. (d) Average leakage
probability in the measure qubits after preparing |1⟩ and per-
forming N measurements. The dashed line shows the heating
limit where the measurements are replaced by an equivalent
amount of waiting time.

where P (f |i) is the probability of preparing |i⟩ and mea-
suring |f⟩. Note that state preparation errors will show
up as measurement errors in this protocol. The complete
ex-situ optimizer achieves an average measurement error
of 1.5% per qubit, while in-situ and partial ex-situ opti-
mization achieve 1.9% and 4.7%, respectively. Overall,
in-situ and complete ex-situ optimization have similar
performance with the exception of a few high-error out-
liers for the in-situ optimizer. For instance, the largest
outlier is caused by |11⟩ ↔ |02⟩ swapping between two
neighboring qubits, which the ex-situ optimizer is able to
avoid [20]. Out of the 1.5% error per qubit, we are able
to account for 1.2% when we include the contributions
from state preparation, separation error, and relaxation
error [20]. We estimate that the state preparation error
is 0.4%, which, if accurate, should be subtracted from
the values above. However, since state preparation errors
should affect all three strategies the same we have chosen
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to be conservative and not do the subtraction.
Next, we benchmark reset errors added by readout for

the measure qubits only (data qubits do not need reset).
We prepare |1⟩, perform measurements immediately fol-
lowed by reset and another round of measurements. In
the case of no errors we expect the second measurement
to yield |0⟩. We also perform the same sequence but
without the first round of measurements and subtract
that to remove the intrinsic reset and measurement errors.
The results are shown in Fig. 3(c). Complete ex-situ
optimization adds on average an additional 0.4% of reset
errors, compared to 4.7% and 1.4% for partial and in-situ,
respectively.

For the final benchmark, we quantify qubit leakage.
Again, we focus on the measure qubits and prepare |1⟩
as that makes the qubits more likely to leak, and then
perform a variable number of measurements. We append
a final and different measurement that is able to discrim-
inate if the qubit has left the computational subspace.
Figure 3(d) shows the probability of leakage as a function
of the number of measurements. Complete ex-situ opti-
mization suppresses leakage down to an average of 0.8%
after 20 measurement rounds, comparable to the heating
limit as measured by repeating the experiment with no
readout pulses but an equivalent amount of waiting time.
After the same number of rounds, the partial and in-situ
strategies have leakage populations of 5.7% and 2.2%,
respectively.

Comparing the optimization strategies, we see that com-
plete ex-situ using both predictive and heuristic models
outperforms the others in all three benchmarks. It is able
to achieve lower measurement errors, while also adding
less reset and leakage errors for mid-circuit measurements.
The partial ex-situ optimizer generally performs worse
than in-situ optimization. This is likely due to the lack
of an amplitude limiting model, which tends to drive the
optimizer towards short and high-amplitude pulses, which
in turn leads to state transitions. This emphasizes that
for model-based optimization to work well, the models
have to account for all dominant error mechanisms, even
if only as heuristics.

In conclusion, we demonstrated model-based optimiza-
tion for superconducting qubit readout achieving low
measurement errors (1.5%) for both mid-circuit and ter-
minal measurements. For mid-circuit measurements, we
also observed suppressed reset errors (0.4%) and no in-
crease in leakage due to readout. We accomplished this by
overcoming the challenges stated in the introduction: the
presented models accurately capture the relevant error
channels, and they can be evaluated 10,000 times faster (1
minute vs 1 week for the parameter space used here) than
measuring errors directly in hardware, which unlocks the
ability to use a global optimizer. Based on recent work in
Ref. [21] we believe the snake optimizer and these models
will scale to at least 1,000 qubits.

Our model-based readout optimization strategy has

already been employed in several large experiments, such
as the demonstration of a distance-5 surface code [9] with
a measurement error of 1.9% per qubit, and a 70 qubit
random-circuit sampling experiment [19] with an error of
1.3% per qubit. While the performance is among the best
observed for repetitive and simultaneous measurements
in superconducting qubits, even better performance will
be needed to be well below the error-correcting threshold.
In particular, the readout time has to be shorter to avoid
data-qubit idling errors.

We believe that the error rates achieved in this Letter
are close to optimal for the given processor, and that
the path to more performant readout is through longer
relaxation times, higher measurement efficiencies, and
more optimized circuit parameters. While we treated
the circuit parameters as fixed, we could include them as
optimization parameters to inform the design of future
processors. However, more research is needed to find the
optimal readout circuit for superconducting qubits.

We thank the broader Google Quantum AI team for
fabricating the processor, building and maintaining the
cryogenic system, and general hardware and software
infrastructure that enabled this experiment. We also
thank V. Sivak and W. Livingston for providing comments
on the manuscript, and L. Martin for helping with the
crosstalk analysis.
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MEASUREMENT SETUP

Overall, the control and measurement setup of the processor is similar to as described
in [1]. On a 72 qubit Sycamore processor there are in total 12 readout lines, which run
diagonally across the device. Each readout line has a Purcell filter, which is shared among
6 qubits; however, since in this work we only use 17 qubits in a distance-3 surface code
arrangement we maximally use 3 qubits on a single readout line. Furthermore, each readout
line has a near quantum-limited parametric amplifier operating in the phase-preserving mode.
The frequencies of the resonators (see Fig. 1) are chosen with respect to the bandwidths
of the filter, the amplifier, and the electronics used to synthesize and sample the readout
signals. In the same figure the readout lines are indicated by dashed diagonal lines.

OPTIMIZED PARAMETERS

The fixed parameters which the error models take as input can be seen in Fig. 1. For
completeness we plot the parameter outputs of the three optimization strategies in Fig. 2,
but it is not easy to draw many quantitative conclusions from the values. One interesting
thing to note in the ex-situ optimization with only predictive models (middle row) is that
the qubits are very close in frequency, especially along the diagonals. This is not ideal since
there is non-negligible coupling between the qubits (as described in the main text) and thus
they can be subject to swapping, which leads to measurement errors. When we include the
heuristic qubit-qubit coupling model (bottom row) we see that the frequencies are more
spread out.

Another quantity of interest is the ratio between the dispersive shift, χ, and the resonator
linewidth, κ. From an SNR perspective and given a fixed readout amplitude, the optimal
value is χ/κ = 0.5. We expect that ex-situ optimization using only predictive models would
yield qubit frequencies that are close to achieving that ratio, which we see to a large extent.
When using all models, we see that χ is typically smaller, which is due to the fact that
the heuristic measurement-induced state transition models tend to push qubits to larger
frequencies where χ is smaller.

A similar analysis can be done regarding the maximum photon number. Using predictive
only models we see that the maximum photon numbers are quite uniform across all 17 qubits,
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FIG. 1. Individual qubit values for the fixed parameters. The color of each square represents the

value for that qubit, but note that the color scale is not shared between panels. In the first panel,

the individual readout lines are indicated by dashed diagonal lines. Note that for the qubit-resonator

coupling we plot the frequency-independent coupling efficiency, which when multiplied by √
ωrωq/2

gives the coupling strength g. For T1(ωq) we show the median value across the frequency range

used in the optimization.

while for all models they have a larger spread and typically reach higher photon numbers
as well. This is again due to the measurement-induced state transitions which forces the
qubits to use larger frequencies where more photons are required to achieve the same SNR.
The inclusion of the crosstalk model also forces a spread in qubit frequencies, which in turn
causes a spread in χ and maximum photon numbers.

THE SNAKE OPTIMIZER

Here, we briefly describe the workflow of the snake optimizer as shown in Fig. 3. We
start with all qubits unoptimized. Then, we pick a start qubit, construct its cost function
[Fig. 3 (a)], and find the global minimum using a brute-force search over the three parameters.
Those parameters are now locked in for that qubit. We then traverse to a second qubit and
repeat the process, with the addition of the qubit-qubit coupling models, which depend on
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FIG. 2. Parameter outputs of the three optimization strategies (rows). The pulse power is referred

to the input of the readout resonators, and the maximum photon number in the resonator is

calculated using Eq. (2) in the main text. Color scales are shared within each column.

the parameters of the first qubit. As seen in Fig. 3 (b) and (c), the frequency spectrum gets
more crowded as the process goes on. This means that as we traverse the processor, the
more constraint the optimization problem becomes; however the constraints do not grow
indefinitely since we only include up to next-nearest neighbors. For the surface code, where
low readout error are more important for the measure qubits, we start on a measure qubit
and traverse diagonally (to another measure qubit); this allows those qubits to explore a
larger search space and find a solution with lower error. When all measure qubits have been
optimized, we optimize the data qubit until the full processor is completed.

DETAILED BENCHMARKING RESULTS

In Figs. 4 to 6 we show the benchmarking results on a per qubit basis. In Fig. 4 for each
optimization strategy we separate the errors for |0⟩ and |1⟩, as well as for the all qubits
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(a) (b) (c)

OptimizedUnoptimized In progress

Separation

Relaxation
Residual photon number

Measurement-induced
state transitions
Qubit-qubit coupling

Stray coupling

FIG. 3. Graph traversal and build-up of the cost functions for 9 qubits with nearest and next-nearest

neighbor couplings. We start with a fully unoptimized processor. We choose a starting qubit and

optimize it, then traverse to a new one while adding relevant error models as we go, until we

optimized all qubits. (a) Error models for the first (measure) qubit. The measurement-induced

state transition is implemented as a smoothed step function when the maximum photon number

goes above a certain value (see the main text for more details). (b) Error models for the second

(measure) qubit. Here, error components for coupling to the first qubit has been added. (c) Error

models for a later (data) qubit with a dense spectrum of error components. Note the absence of the

reset error model since this qubit doesn’t have mid-circuit measurements.

simultaneously and measure qubits only cases. For instance, we can see the large outlier of
0.139 for in-situ |1⟩, which is due to a frequency collision between that qubit’s |0⟩ ↔ |1⟩
transition and the qubit to its right’s |1⟩ ↔ |2⟩ transition, as can be seen in Fig. 2.

Another large outlier is the bottom left qubit in the ex-situ optimization with predictive
models only. By looking in Fig. 5 we see that the same qubit is a large outlier in reset error
as well, indicating that this is due to severe measurement-induced state transitions. We can
confirm this by inspecting Fig. 6 where the same qubit has a large probability of being leaked
after just one measurement.
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In-situ Ex-situ: predictive

Ex-situ: all

Heating limit

FIG. 6. Probability of qubit leakage after N rounds of measurements for each measure qubit and

optimization strategy. All panels share the same x and y axes.

CROSSTALK

In addition to just looking at the measurement error for each qubit and try to infer the
impact of crosstalk we can directly look at correlations between qubits. A variety of different
metrics exist, with one being the cross-fidelity matrix [2]. In this work have to use a slightly
modified formula which properly accounts for the fact that we are only sampling 200 out of
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FIG. 7. Integrated histograms of the absolute values of the off-diagonal cross-fidelity matrix elements,

|Fij |, for the three optimization strategies.

the 217 = 131, 072 possible states,

Fij = 1 − [P (1i|0j) + P (0i|1j)] = 1 − 1
2 [P (1i|0i0j) + P (1i|1i0j) + P (0i|1i1j) + P (0i|0i1j)] ,

(1)
where P (xi|yizj) is the probability to measure state x for qubit i given that it was pre-
pared in state y while qubit j was prepared in state z. For an ideal measurement system
Fij = 0 ∀ i ̸= j. In Fig. 7 we plot the distributions of |Fij| for all off-diagonal elements
and the three optimization strategies. As expected, ex-situ using all available error models is
outperforming the other two, achieving a mean of 0.04%, compared to 0.19% and 0.24% for
in-situ and ex-situ: predictive only, respectively. This is expected since the crosstalk error
model described in the main text is only included in the ex-situ: all optimization, which
means that there is nothing preventing qubit frequency collisions in the other two strategies.

ERROR BUDGET

To provide insight for what contributes to the observed 1.5% error per qubit (for the
ex-situ optimization with all models) we construct an error budget (seen in Fig. 8). We
consider three possible error mechanisms:

• Separation error [see Eq. (4) in the main text]. We estimate this from the separation
and distribution widths in phase-space when preparing |0⟩ and |1⟩ on every qubit

• State preparation error. We take this as the probability that we did not prepare |0⟩.
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FIG. 8. Error budgets for the |0⟩ and |1⟩ states averaged over all 17 qubits. Each color corresponds

to a different error mechanism. The differences between the actually observed error and the three

considered mechanisms are indicated by “unknown”.

We estimate it by preparing |0⟩, measure the probability of |1⟩, and then subtract the
separation error. Ideally we would also include the error of preparing |1⟩, however this
is more difficult to faithfully extract so we choose to not include it here. For reference,
the single-qubit error as measured by randomized benchmarking earlier on the same
device was close to 0.001 [3].

• Relaxation error. We calculate this using Eq. (6) in the main text.

From these three error mechanisms we estimate an error of 1.2% per qubit. The remaining
error is indicated in Fig. 8 as unknown and could include errors from sources like crosstalk,
preparation of |1⟩, and measurement-induced state transitions. With the tools currently
available to us we are not able to quantify the contributions from these separately.
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